In recent years, several metrics have been developed for evaluating group fairness of rankings. Given that these metrics were developed with different application contexts and ranking algorithms in mind, it is not straightforward which metric to choose for a given scenario. In this paper, we perform a comprehensive comparative analysis of existing group fairness metrics developed in the context of fair ranking. By virtue of their diverse application contexts, we argue that such a comparative analysis is not straightforward. Hence, we take an axiomatic approach whereby we design a set of thirteen properties for group fairness metrics that consider different ranking settings. A metric can then be selected depending on whether it satisfies all or a subset of these properties. We apply these properties on eleven existing group fairness metrics, and through both empirical and theoretical results we demonstrate that most of these metrics only satisfy a small subset of the proposed properties. These findings highlight limitations of existing metrics, and provide insights into how to evaluate and interpret different fairness metrics in practical deployment. The proposed properties can also assist practitioners in selecting appropriate metrics for evaluating fairness in a specific application.
translated by 谷歌翻译
我们为旨在降低公平性的对抗神经网络(GNN)的对抗性攻击(GNN)的存在和有效性提供了证据。这些攻击可能不利基于GNN的节点分类中的特定节点子组,其中基础网络的节点具有敏感的属性,例如种族或性别。我们进行了定性和实验分析,以解释对抗链接注射如何损害GNN预测的公平性。例如,攻击者可以通过在属于相反子组和相反类标签的节点之间注入对抗性链接来损害基于GNN的节点分类的公平性。我们在经验数据集上的实验表明,对抗公平性攻击可以显着降低GNN预测的公平性(攻击是有效的),其扰动率较低(攻击是有效的),并且没有明显的准确性下降(攻击是欺骗性的)。这项工作证明了GNN模型对对抗公平性攻击的脆弱性。我们希望我们的发现在社区中提高人们对这个问题的认识,并为GNN模型的未来发展奠定了基础,这些模型对这种攻击更为强大。
translated by 谷歌翻译
Inspired by strategies like Active Learning, it is intuitive that intelligently selecting the training classes from a dataset for Zero-Shot Learning (ZSL) can improve the performance of existing ZSL methods. In this work, we propose a framework called Diverse and Rare Class Identifier (DiRaC-I) which, given an attribute-based dataset, can intelligently yield the most suitable "seen classes" for training ZSL models. DiRaC-I has two main goals - constructing a diversified set of seed classes, followed by a visual-semantic mining algorithm initialized by these seed classes that acquires the classes capturing both diversity and rarity in the object domain adequately. These classes can then be used as "seen classes" to train ZSL models for image classification. We adopt a real-world scenario where novel object classes are available to neither DiRaC-I nor the ZSL models during training and conducted extensive experiments on two benchmark data sets for zero-shot image classification - CUB and SUN. Our results demonstrate DiRaC-I helps ZSL models to achieve significant classification accuracy improvements.
translated by 谷歌翻译
Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Deep learning models operating in the complex domain are used due to their rich representation capacity. However, most of these models are either restricted to the first quadrant of the complex plane or project the complex-valued data into the real domain, causing a loss of information. This paper proposes that operating entirely in the complex domain increases the overall performance of complex-valued models. A novel, fully complex-valued learning scheme is proposed to train a Fully Complex-valued Convolutional Neural Network (FC-CNN) using a newly proposed complex-valued loss function and training strategy. Benchmarked on CIFAR-10, SVHN, and CIFAR-100, FC-CNN has a 4-10% gain compared to its real-valued counterpart, maintaining the model complexity. With fewer parameters, it achieves comparable performance to state-of-the-art complex-valued models on CIFAR-10 and SVHN. For the CIFAR-100 dataset, it achieves state-of-the-art performance with 25% fewer parameters. FC-CNN shows better training efficiency and much faster convergence than all the other models.
translated by 谷歌翻译
Building segmentation in high-resolution InSAR images is a challenging task that can be useful for large-scale surveillance. Although complex-valued deep learning networks perform better than their real-valued counterparts for complex-valued SAR data, phase information is not retained throughout the network, which causes a loss of information. This paper proposes a Fully Complex-valued, Fully Convolutional Multi-feature Fusion Network(FC2MFN) for building semantic segmentation on InSAR images using a novel, fully complex-valued learning scheme. The network learns multi-scale features, performs multi-feature fusion, and has a complex-valued output. For the particularity of complex-valued InSAR data, a new complex-valued pooling layer is proposed that compares complex numbers considering their magnitude and phase. This helps the network retain the phase information even through the pooling layer. Experimental results on the simulated InSAR dataset show that FC2MFN achieves better results compared to other state-of-the-art methods in terms of segmentation performance and model complexity.
translated by 谷歌翻译
Object detection and classification using aerial images is a challenging task as the information regarding targets are not abundant. Synthetic Aperture Radar(SAR) images can be used for Automatic Target Recognition(ATR) systems as it can operate in all-weather conditions and in low light settings. But, SAR images contain salt and pepper noise(speckle noise) that cause hindrance for the deep learning models to extract meaningful features. Using just aerial view Electro-optical(EO) images for ATR systems may also not result in high accuracy as these images are of low resolution and also do not provide ample information in extreme weather conditions. Therefore, information from multiple sensors can be used to enhance the performance of Automatic Target Recognition(ATR) systems. In this paper, we explore a methodology to use both EO and SAR sensor information to effectively improve the performance of the ATR systems by handling the shortcomings of each of the sensors. A novel Multi-Modal Domain Fusion(MDF) network is proposed to learn the domain invariant features from multi-modal data and use it to accurately classify the aerial view objects. The proposed MDF network achieves top-10 performance in the Track-1 with an accuracy of 25.3 % and top-5 performance in Track-2 with an accuracy of 34.26 % in the test phase on the PBVS MAVOC Challenge dataset [18].
translated by 谷歌翻译
Zero-shot detection (ZSD) is a challenging task where we aim to recognize and localize objects simultaneously, even when our model has not been trained with visual samples of a few target ("unseen") classes. Recently, methods employing generative models like GANs have shown some of the best results, where unseen-class samples are generated based on their semantics by a GAN trained on seen-class data, enabling vanilla object detectors to recognize unseen objects. However, the problem of semantic confusion still remains, where the model is sometimes unable to distinguish between semantically-similar classes. In this work, we propose to train a generative model incorporating a triplet loss that acknowledges the degree of dissimilarity between classes and reflects them in the generated samples. Moreover, a cyclic-consistency loss is also enforced to ensure that generated visual samples of a class highly correspond to their own semantics. Extensive experiments on two benchmark ZSD datasets - MSCOCO and PASCAL-VOC - demonstrate significant gains over the current ZSD methods, reducing semantic confusion and improving detection for the unseen classes.
translated by 谷歌翻译